Учимся считать до 20
Когда малыш без труда будет считать до 10, уверенно показывать цифры и соотносить нарисованную цифру с количеством предметов, соответствующему ей, можно приступить к изучению дальнейшего счета.
Кроме механического способа заучивания дальнейшего счета, такими же методами, как и применялись при изучении счета от 1 до 10, ребенку нужно объяснить понятия “десяток” и “единица”.
Все должно быть в форме игры, а не скучного занятия. Для этого можно взять 20 конфет и 2 коробки. Нужно предложить ребенку в одну коробку, считая вслух, сложить 10 конфет.
Взрослый должен рассказать малышу, что это называется “десяток”. Придвинув к коробке с “десятком” пустую коробку, нужно складывать туда остальные конфеты поочередно, и произносить вслух счет: 11, 12, 13 и так до 20.
После этого, предложить малышу пересчитать конфеты во 2 коробке
Следует обратить внимание ребенка на то, что получился еще “десяток”. Так можно показать, что в 2 коробках 2 десятка конфет.
Эту игру можно сопроводить с демонстрацией карточек, на которых будут изображены изучаемые числа.
Важно объяснить ребенку, что после 10, все числа будут состоять из двух цифр. Первое из которых “десяток” (первая коробка с конфетами), а второе единица (вторая коробка с конфетами)
Первое из которых “десяток” (первая коробка с конфетами), а второе единица (вторая коробка с конфетами).
Ребенок должен понять систему, по которой все цифры идут одна за другой: 11 после 10, 12 после 11 и т.д.
Нужно продолжать активно использовать обучающие мультфильмы, считалочки, песенки, раскраски с заданиями и т.д. – все то, что применялось при изучении счета от 1 до 10.
Когда у ребенка сформируется понимание “десятка” и “единицы”, то можно осваивать счет дальше до 100.
Не забывайте уделять внимание и другим
Знакомство с изображением чисел
Когда малыш как следует освоит счет до 5, можно показывать ему изображения цифр. Лучше изготовить или купить в магазине карточки с большими красочными цифрами. Желательно, чтобы их размер был не менее половины листа А4 (это обычный альбомный лист). Расскажите ребенку о том, что каждая цифра имеет свое собственное имя. Рядом с цифрой положите карточку с изображением соответствующего ей количества предметов. Так, с помощью зрительных образов малыш быстро запомнит, какому количеству предметов соответствует та или иная цифра.
Что еще можно сделать для лучшего запоминания:
- вылепить цифру из пластилина;
- купить магнитные цифры и повесить их на холодильник, регулярно играя c ними;
- нарисовать цифру на большом листе бумаги, все время поясняя ребенку, что делаете, и повесить на видное место;
- завести отрывной календарь, рассказывая малышу каждый день, что сегодня такое-то число, и что вы собираетесь сегодня делать;
- использовать часы: настоящие настенные или игрушечные. Каждый час нужно показывать своему чаду циферблат и проговаривать, сколько время;
- используем игру в детский магазин, где нужно считать игрушечные деньги;
- играем в игры-ходилки с игрушечным кубиком, на котором нужно считать точки;
- играем в детское домино с изображением цифр и предметов, которые нужно считать;
- быть всегда в хорошем настроении и почаще хвалить малыша за успехи.
Одновременно показывайте ребенку, как пишутся цифры, изучая в день не более одной. Далее следует тот же самый алгоритм с обучением счету до 10. Как правило, дети очень просто осваивают счет до этой цифры. Затем можно заняться счетом до 20. Как лучше объяснить ребенку схему такого счета?
Устный счет: как научиться считать в уме?
«Счет в уме» — это выполнение математических вычислений, без помощи дополнительных устройств. Большинство людей в мире используют так называемую аудиомоторную форму счета. Это значит, что люди запоминают результаты счета для каждого действия, а потом просто его воспроизводят. Фактически, это не является прямым счетом, а лишь воспоминания о том, что должно получиться в результате. Пример – Дважды два – четыре, трижды три – девять, и так далее по таблице умножения. Более того, огромное количество математических операций приводит к необходимости обрабатывать огромные массивы информации, в поисках нужного действия. Это и объясняет то, что большинство людей прекрасно считают в пределах сотни, однако заходят в тупик при умножении двухзначных чисел. Более того, аудиомоторная техника включает в себя запоминание аудиоинформации о словесной форме и звучании действия. Это замедляет сам процесс поиска решения.
Как правильно учить?
Обучение ребенка основам математического счета должно происходить только в игровой форме и при желании малыша. Обучение счету должно вестись в увлекательной игровой форме и непрерывно (каждый день). Задействуется зрительная и тактильная память малыша. Занятия должны быть выстроены в четком алгоритме и иметь систему. Допустим, сначала происходит закрепление понимания “один” и “много”, затем “больше” и “меньше”
Важно объяснить разницу между понятиями “больше”, “меньше”, “равно”. В игровой форме, например, спускаясь по лестнице, научите ребенка порядковому счету от 1 до 10; Покажите ребенку на предметах, как соотносятся произносимые цифры с реальным количеством; Попробуйте на элементарных жизненных ситуациях объяснить ребенку, как происходит увеличение или уменьшение количества предметов, например, к одной машине приехала еще одна, получилось две машины и т.д
Если вы считаете, что формирование такого важного навыка лучше доверить профессионалам, то рекомендуем вам записать ребенка на курсы ментальной арифметики. Результаты занятий вас приятно удивят!
Деление
Это операция, обратная умножению. Начнём снова с самого простого.
Деление двузначного числа на однозначное
Разделим 48 : 3. Основная задача — подобрать число, которое можно умножить на 3 и получить 48. Из таблицы умножения мы помним, что единственное число, результат умножения которого на 3 в конце имеет цифру 8 — это 6. А 3 × 6 = 18. То есть, у нас остаётся 30 : 3 = 10. Итого, получается 48 : 3 = 16.
Деление многозначного числа на однозначное
Разделим 6475 : 7. В подобных примерах главная задача — «взять» максимальные «круглые» части, которые можно разделить на 6 без остатка.
- Выделим из 6475 самую большую часть, которую можно разделить на 7 без остатка. 6475 близко к 7000 (то есть 7 × 1000), значит, можно попробовать взять 900 × 7 = 6300. Отлично!
- Остаётся 175. Таким же образом, выделяем из 175 самое большое число, которое можно разделить на 7 по таблице умножения — это 140. А 140 : 7 = 20. Запомним это число и вычтем 175 − 140. Сотни в результате дают ноль, а 7 − 4 = 3. То есть остаток на данный момент — 35.
- Вспоминаем, что по таблице умножения 7 × 5 = 35, и складываем все получившиеся числа: 900 + 20 + 5 = 925.
Деление на двузначное число
С делением на двузначное число всё гораздо интереснее. Задача в том, чтобы найти пределы, в которых лежит результат.
Например, разделим 6351 : 73:
- Сначала попробуем угадать, в каком десятке находится результат. Помним, что по таблице умножения 7 × 8 = 56, поэтому пробуем умножить 73 × 80 = 5840. Это максимально близкий десяток, потому что если прибавить ещё 730 (то есть 73 × 10), получится уже 6570 — больше чем нужно. Следовательно, наше число лежит в пределах между 80 и 90.
- Теперь посмотрим на последние цифры наших чисел — 1 и 3. Из таблицы умножения мы помним, что только одно число при умножении на 3 на на конце даёт 1 — это 7. Пробуем умножить 73 × 7 = 511. Складываем 5840 + 511 = 6351. Ура, ответ 87!
Небольшие хитрости
- Некруглые числа можно легко делить на 2, округляя их. Например, 358 делим на 2. Округлим 358 до 360, а затем уже его разделим на 2 — получим 130. А затем вычтем и этого числа 1 (получились в результате деления на 2 прибавленной 2).
358 : 2 = 360 : 2 − 2 : 2 = 130 − 1 = 129
- Существует закономерность, по которой умножение на 5 можно почти приравнять к делению на Например, если умножить 47 × 5 = 235, а если разделить 47 : 2 = 23,5. Магия, да? То есть чтобы умножить любое число на 5, его нужно сначала разделить на 2, а затем умножить на 10.
- Чтобы умножить число на 25, порой проще разделить его на 4, а затем умножить на 100 (или дописать два нуля):
12 × 25 = 12 : 4 × 100 = 3 × 100 = 300
Этих способов достаточно, чтобы тренироваться уверенно считать в уме. Помните, что делать это нужно регулярно, уделяя всего по 5–10 минут каждый день. Постарайтесь поймать свой ритм, чтобы решение таких задачек приносило удовольствие. И упирайте на правильность ответов, а не скорость — она придёт со временем. И не бросайте.
А если вам нужна помощь в решении более сложных задач, которые уже нельзя просчитать в уме, вам с радостью помогут специалисты Мультиворка.
Как научить ребенка складывать и вычитать
Приступая к обучению устному счету, стоит прежде всего учитывать возрастные особенности детей.
Если речь идет о ребенке младшего дошкольного возраста, целесообразно будет начать изучение материала с простейших примеров и задач, предварительно объясняя, что такое число, а что такое цифра; постепенно объяснить ребенку сложение и вычитание.
Для старших дошкольников подойдут игры и методики посложнее – те, в которых нужно применять на практике навыки сложения и вычитания, например, игра «Магазин».
Для детей 2-3 лет
Детям данной возрастной категории проще всего будет научиться считать, используя пальцы рук. Например, нужно сесть рядом с ребенком, начать загибать по очереди его пальчики и считать при этом вслух.
Например, говорить:”У мамы одна конфета. Разогни один пальчик. У папы три конфеты. Разогни еще три пальчика. Сколько всего конфет получилось? Посчитай пальчики. Один, два, три, четыре. Правильно!”
Или так: “У мамы пять конфет. Разогни пять пальчиков. Папа забрал у мамы две конфеты. Загни два пальчика. Сколько конфет осталось у мамы? Посчитай оставшиеся пальчики. Раз, два, три.”
Для детей 4-5 лет
Детям в возрасте 4-5 лет удобнее всего объяснять принципы сложения и вычитания с помощью обучающего материала, которым могут послужить любимы игрушки.
Например, можно посадить рядом пять кукол, потом добавить еще две, спросить ребенка, сколько получилось, после этого добавить еще одну, спросить, сколько кукол получилось теперь. Или поставить в ряд семь машинок, откатить три, спросить, что произошло, и сколько машинок теперь осталось.
Проводить обучение можно, используя любые окружающие предметы: кубики, палочки, карточки. Так же можно приобрести прописи “Учим порядковый счет до 5,10,20 и 100”.
Для детей 5-6 лет
Для обучения счету детям от 5 до 6 лет подойдут те же игровые методики, что и для четырех и пятилетних ребят.
Задания можно усложнять, давая для решения ребенку составные примеры, например 2 + 2 – 1, решению подобных задач поможет линейка счетная для дошкольников.
Главное, на чем стоит остановиться родителям, это как объяснить ребенку, что такое плюс и минус
Важно с самых первых дней занятий дать четкое определение данным терминам: плюс – это когда что-то прибавляется, а минус – когда что-то убавляется
Для учеников 1 класса
Поступление детей в первый класс является для них важной жизненной ступенью. В это время у ребенка меняется сфера деятельности, он примеряет на себя роль ученика. Для достижения положительных результатов, учитывая возраст школьников, педагоги практикуют изучение устного счета в игровой форме:
Для достижения положительных результатов, учитывая возраст школьников, педагоги практикуют изучение устного счета в игровой форме:
- Метод Зайцева. Получение новых знаний происходит благодаря использованию специальных кубиков и таблиц.
- Метод Глена Дамана. Обучение счету ведется с помощью карточек, на которых располагается отдельное количество точек.
- Метод Полякова. Понятие о числе и цифрах дети получают, раскладывая разноцветные кубики и наполняя коробочки с отверстиями.
Для учеников 2 класса
Младшие школьники к этому времени уже должны овладеть основными навыками математических действий.
Применение игровых методик отходит на второй план, упор делается на решение примеров в тетрадях и у доски. Детям предлагают для решения простые задачи, в которых участвуют сложные цифры и десятки.
Кто такой Дэниел Таммет
Для начала немного о самом герое нашей статьи. Дэниел Таммет – это американский савант-вундеркинд, который может складывать, делить и умножать в уме числа, имеющие в своём составе до 100 знаков. Это даже не триллионы, а, наверное, те самые «гуголы» (числа с сотней нулей), о которых так любят говорить.
Родился Дэниел 31 января 1979 года в Лондоне. Свои способности проявил в возрасте 4 лет после сильнейшего приступа эпилепсии. В 2004 году побил мировой рекорд и воспроизвёл 22 514 знаков числа Пи после запятой.
Также этот человек знает 11 языков, включая родной для него английский. Изобрёл собственный язык (манти), грамматика которого напоминает финский и эстонский. Однако больше всего впечатляют, конечно, его математические способности.
Полезен ли устный счет?
Наш ответ – однозначно да. Развивая свой навык математического счета в уме, вы развиваете свой мозг, свою память и логику. А научившись хорошо считать в уме, вы вдобавок станете более остроумным. Но главное – вы избавитесь от вашей зависимости считать даже маленькие числа на калькуляторе. Согласитесь, разве вам не приятно поймать себя на мысли, когда вы будете тянуться к калькулятору: «Подожди, мне это не нужно!» и далее найти ответ в своей голове?
К счастью, помимо развития подобного навыка за счет постоянных тренингов, существуют некоторые математические приемы, которые ускоряют и упрощают ваши вычисления в уме. Но также помните, что некоторые математические задачи все-таки было бы глупо не решать с помощью калькулятора. Так что все зависит от того, что именно вы хотите посчитать.
Секреты устного счёта
Существуют приемы устного счета — простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.
Прибавляем числа 7,8,9
Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.
Примеры:
56+7=56+10-3=63
47+8=47+10-2=55
73+9=73+10-1=82
Быстро складываем двузначные числа
Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».
Примеры:
54+39=54+40-1=93
26+38=26+40-2=64
Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем — единицы.
Пример:
57+32=57+30+2=89
Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:
32+57=32+60-3=89
Складываем в уме трехзначные числа
Быстрый счет и сложение трехзначных чисел — это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.
Пример:
249+533=(200+500)+(40+30)+(9+3)=782
Особенности вычитания: приведение к круглым числам
Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.
Примеры:
67-9=67-10+1=58
576-88=576-100+12=488
Вычитаем в уме трехзначные числа
Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.
Пример:
843-596=843-500-90-6=343-90-6=253-6=247
Умножить и разделить
Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения — это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения — с 11 до 19!
Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:
15*16=15*10+(10*6+5*6)=150+60+30=240
Умножаем и делим на 4, 6, 8, 9
Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.
Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:
-
умножить на 4 — это дважды умножить на 2;
-
умножить на 6 — это значит умножить на 2, а потом на 3;
-
умножить на 8 — это трижды умножить на 2;
-
умножить на 9 — это дважды умножить на 3.
Например:
37*4=(37*2)*2=74*2=148;
412*6=(412*2)·3=824·3=2472
Аналогично:
-
разделить на 4 — это дважды разделить на 2;
-
разделить на 6 — это сначала разделить на 2, а потом на 3;
-
разделить на 8 — это трижды разделить на 2;
-
разделить на 9 — это дважды разделить на 3.
Например:
412:4=(412:2):2=206:2=103
312:6=(312:2):3=156:3=52
Как умножать и делить на 5
Число 5 — это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.
Пример:
326*5=(326*10):2=3260:2=1630
Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.
326:5=(326·2):10=652:10=65,2.
Умножение на 9
Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:
37*9=(37*3)*3=111*3=333
или
37*9=37*10 — 37=370-37=333
Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко — это примеры занимательные, так называемые маленькие хитрости.
Тренировка устного счета
Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. – все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.
Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.
Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:
1. Способности
Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению
2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.
3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.
Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм
Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время
Действие умножения
Если понимать, что умножение – это сложение одинаковых чисел определенное количество раз, ничего сложного в действии нет. Например, 4*7 = 4+4+4+4+4+4+4. В итоге получают 28. Упростит действие таблица умножения. Ее знает каждый школьник.
Чтобы правильно умножать числа, их сводят к простым. Рассмотрим техники умножения.
Умножение 9 и 11
Правило при умножении на 9 умножают на 10 и вычитают 9. Если умножают на 11, сначала умножают на 10, прибавляя исходный показатель.
Пример:
- 15*9 = 15*10-15 = 150-15 = 135;
- 57*11 = 57*10+57 = 570+57 = 627.
Умножение на 5 чисел до 10
Эта техника поможет правильно умножать двух-, трехзначные числа. Правило простое – множитель делят на 2. Получив результат в виде целого показателя, добавляют в конце 0, а если число не целое, отбрасывают остаток и добавляют в конце 5.
Пример 1482*5 решают так:
- (1482/2) _ (+0 или +5) = 741 _ (+0) = 7410 – исходный показатель делили на 2 без остатка;
- 2269-5 = (2269/2) _ (+0 или +5) = 1134,5 _ (+5) = 11345 – исходный показатель делили на 2 с остатком.
Техника, как быстро научиться считать деньги, умножая число на 5, 25, 50, 125 с использованием формул:
- А*5 = А*10/2;
- А*50 = А*100/2;
- А*25 = А*100/4;
- А*125 = А*1000/8.
Приставляя вместо А цифру, в процессе решения формулы получают нужный результат. Например, 25*25 = 25*100/4 = 2500/4 = 625.
https://youtube.com/watch?v=jqy0PeilDMw
Умножение больших чисел с одним четным
В этом случае пользуются методикой упрощения множителей. Четное число уменьшают в 2 раза, а нечетное увеличивают в 2 раза. Например, 48*125 = 24*250 = 12*500 = 6*1000 = 6000.
Умножение многозначного числа на однозначное
Разбираясь, как научиться быстро считать деньги на кассе, пользуются техникой раскладывания на порядки, как в случае сложения. Пример 468*6 решают так:
- Раскладывают 468 на 400, 60, 8. Умножают каждое число на 6.
- Получают (400*6) = 2400 + (60*6) = 360 + (8*6) = 48. Итого 2400+360+48 = 2808.
Более сложный вариант с перегруппировкой итоговых результатов выглядит так: 2400+360+48 = 2000+400+300+60+48 = 2000+700+108 = 2808.
Умножение простых чисел
Диагональный метод нужен при поисках техники как быстро научиться считать устно. Заключается способ в дописывании числа, которого «не хватает до 10».
Пример 7*8 решают так:
- высчитают недостающее до 10 – в 7 это 3, в 8 это 2;
- затем 8-3 = 5;
- 3*2 = 6;
- в итоге получают 56.
https://youtube.com/watch?v=_I9nVPWZq2E
Умножение чисел от 10 до 20
Правило – к одному числу прибавляют единицы другого, а сумму умножают 10. К результату добавляют сумму единиц. Например, 13*15 = (13+5)*10 + 3*5 = 180+15 = 195.
Умножение двузначных чисел
Упрощают процесс снова разложением двузначных чисел на простые действия. Пример 78*56 решают так:
- В итоге должно получиться сложение цифры 78 точно 56 раз. Сначала складывают 78 пятьдесят раз, затем еще 6 раз.
- Считают 78*5 = 70*5 + 8*5 = 350+40 = 390*10 = 3900.
- 78*6 = 70*6 + 8*6 = 420+48 = 468.
- 3900+468 = 3000+900+400+60+8 = (3000+1300+60+8) = 4368.
Пользуясь принципом упрощения и раскладывания больших чисел на разряды, умножают все двузначные числа.
Умножение на 9, 99, 999
Учитывают правило прибавления недостающих единиц. Пример 154*99 решают так: 154*(100-1) = 15400-154 = 15246. Таким же образом умножают на 9, 999.
Возведение в квадрат
Это тоже умножение, при котором число раскладывают на составляющие. Сначала находят произведение первой цифры на следующую за ней, результат будет заканчиваться на квадрат последней цифры. Пример возведения 75 в квадрат решают так: 7*8 = 56; 5*5 = 25. В итоге 75*75 = 5625.
Устный счет с опорой на состав числа
Зная состав числа, ребенок может устно выполнить действия по сложению и вычитанию. Понимая, например, что число 8 состоит из 5 и 3, или 1 и 7, или 6 и 2, или 4 и 4, он может не задумываясь решать задачи на сложение и вычитание с этим числом.
Для лучшего запоминания рекомендуется решать с ребенком несложные задания:
- Раскладывать в 2 коробки определенное количество предметов (например, взять 8 горошин и разложить их в разных вариантах: 5+3, 1+7 и т.д.). Предметы нужно постоянно менять, чтобы у ребенка не пропал интерес.
- Предложить ребенку дополнить число до нужного. Например, повесить на елку 5 игрушек и попросить дополнить елку до 8 игрушек и т.д.
Дальше нужно усложнять задачу и решать примеры “выходящие” за десяток, например 8+5. Для этого нужно:
- Дополнить первое слагаемое до 10. То есть, ребенок уже знает, что 10=8+2. То есть, ему нужно из второго слагаемого “забрать” число 2.
- Он вычисляет, сколько еще нужно добавить (на основе знания состава числа 5 = 2+3);
- Высчитать 8+2+3=13,
Такой же прием (доведение до 10) ребенок будет применять и при вычитании.
Освоив эти способы, ребенок в дальнейшем будет использовать их при решении примеров с числами в пределах 100 и 1000.
Деление чисел в уме
Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.
Деление на однозначное число
При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.
Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:
6144:8=(5600+544):8=700+544:8
Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:
544:8=(480+64):8=60+64:8
Осталось разделить 64 на 8 и получить результат, сложив все результаты деления
64:8=8
6144:8=700+60+8=768
Деление на двузначное число
При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.
Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет , так как 5*6=30. Действительно, 1325*656=869200.
Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.
Сколько будет 4424:56?
Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.
56*80=4480
Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления может быть либо число 74, либо 79. Проверяем:
79*56=4424
Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.
Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»
Визуальная методика
Когда производите счет в уме, вы как бы рисуйте их перед собой. Поверьте, это сделает вычисления легче. Результат будет эффективен, если практиковать следующие умения и условия:
- Уметь работать с нудной работой;
- Соперничать;
- Концентрация внимания;
- Контроль увлеченности процессом;
- Восприятие игровой формы.
Не стоит забывать о человеческом состоянии транса. Это когда взрослый человек сконцентрирован на определенном действии и не отвлекается на окружающих. В трансовом состоянии можно длительное время оставаться в одной и той же позе, реакция на свой организм у человека отсутствует. А вообще, стоит помнить о том, чтобы скорее научиться устному счету, нужно уметь пользоваться математическими правилами быстро, четко и по делу!
Устный счет с опорой на состав числа
Зная состав числа, ребенок может устно выполнить действия по сложению и вычитанию. Понимая, например, что число 8 состоит из 5 и 3, или 1 и 7, или 6 и 2, или 4 и 4, он может не задумываясь решать задачи на сложение и вычитание с этим числом.
Для лучшего запоминания рекомендуется решать с ребенком несложные задания:
- Раскладывать в 2 коробки определенное количество предметов (например, взять 8 горошин и разложить их в разных вариантах: 5+3, 1+7 и т.д.). Предметы нужно постоянно менять, чтобы у ребенка не пропал интерес.
- Предложить ребенку дополнить число до нужного. Например, повесить на елку 5 игрушек и попросить дополнить елку до 8 игрушек и т.д.
Дальше нужно усложнять задачу и решать примеры “выходящие” за десяток, например 8+5. Для этого нужно:
- Дополнить первое слагаемое до 10. То есть, ребенок уже знает, что 10=8+2. То есть, ему нужно из второго слагаемого “забрать” число 2.
- Он вычисляет, сколько еще нужно добавить (на основе знания состава числа 5 = 2+3);
- Высчитать 8+2+3=13,
Такой же прием (доведение до 10) ребенок будет применять и при вычитании.
Освоив эти способы, ребенок в дальнейшем будет использовать их при решении примеров с числами в пределах 100 и 1000.
Сложение и вычитание
Умение складывать и вычитать вырабатывается обычно к пяти годам. Сначала это следует делать с помощью различных предметов, затем тренироваться решать простейшие примеры в уме. При обучении счету постепенно нужно вводить несложные примеры на сложение и вычитание. Решать примеры столбиком еще рано, но складывать однозначные числа вполне можно научить.
Заниматься математикой с малышом необходимо так, чтобы он не растерял интерес. Поэтому никаких скучных примеров по типу «3+5=? » быть не может. Учим, завлекая, наглядно. Можно в шуточной форме.
Начинать нужно с простого. К примеру, прибавлять к каждой известной цифре единицу и ее же вычитать. Стоит использовать при этом предметы, интересные ребенку или важные для него. Пример представлять лучше в виде вопроса: «У тебя две печеньки. Одной ты поделишься с мамой. Сколько останется у тебя? » И все в таком же духе.
Чтобы переходить к вычитанию, убедитесь, что малыш хорошо освоил сложение. Используйте примеры сложения и вычитания не только на занятиях, но и на прогулке, в магазине, за обедом, при уборке комнаты. Пусть ребенок проговаривает вслед за вами условие задачки. Пользуйтесь специальными пособиями и дидактическими материалами с несложными упражнениями
Обращайте внимание на наличие ярких иллюстраций. Не забываем – ребенка нужно завлечь
Чтобы легко складывать и вычитать, малышу необходимо изучить состав числа. Он должен усвоить, что 5 состоит из цифр 2 и 3, 1 и 4, 10 – из цифр 1 и 9, 2 и 8 и так далее. Перед тем, как научиться правильно считать в уме, ребенок должен хорошо решать задачки с наглядными материалами или на пальцах. Начинать обучение счету про себя лучше с 4 лет, не раньше. С этого возраста время, отведенное на сложение и вычитание, сказывается на общем развитии.
Важно усвоить понятия «больше», «меньше». Пролистывая обучающие книжки, можно спрашивать, каких животных на странице больше, какого цвета меньше
Также нужно выучить термин «поровну». Обязательно нужно объяснить ребенку, что от перемены мест слагаемых сумма не меняется.
Примеры интересных закономерностей
Задания на поиск закономерностей отлично мотивируют детей быстрее освоить арифметику и перейти к заданиям посложнее.
Найди закономерность и определи, какое число спрятал четвёртый робот?
Какое число будет следующим в этом ряду?
Задания на логику гораздо интереснее арифметических тренажёров.